	INDIAN SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE 2022 – 23 SUBJECT: BIOLOGY		Date of submission: 24.11.2022
Worksheet: 10 with answers	CHAPTER: PHOTOSYNTHESIS IN HIGHER PLANTS & PLANT GROWTH REGULATORS		Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

MULTIPLE CHOICE QUESTIONS

- 1. Identify the reaction centre of PSII
 - (a) Chla 700
 - (b) Chla 680
 - (c) Chla 700 and 680
 - (d) Chlb 680
- 2. Select the correct option applicable for C₃ plants
 - (a) Primary CO₂ acceptor is a 5C compound, PEP
 - (b) Primary CO₂ acceptor is a 3C compound, PEP
 - (c) Primary CO₂ acceptor is a 5C compound, RuBP
 - (d) Primary CO₂ acceptor is a 3C compound, RuBP
- 3. The photosynthetic pathway in C₄ plants is/are
 - (a) C₄ pathway
 - (b) C₃ pathway
 - (c) C₃ pathway and C₄ pathway
 - (d) C_3 pathway or C_4 pathway
- 4. Chemiosmotic synthesis of ATP is due to
 - (a) Formation of high H+ concentration in stroma
 - (b) Formation of high electron concentration in stroma
 - (c) Formation of high H+ concentration in lumen
 - (d) Formation of high electron concentration in lumen
- 5. The hormone responsible for apical dominance is
 - (a) Auxin
 - (b) GA
 - (c) Cytokinin
 - (d) ABA

2 MARKS QUESTIONS

- 6. What are the differences between the primary CO₂ acceptors in C₃ & C₄ pathways?
- 7. What you mean by LHC?
- 8. Write the importance of light reaction in photosynthesis.
- 9. How does Kranz anatomy favour C₄ plants?
- 10. Give a brief description of different factors affecting photosynthesis.
- 11. Which PGR is known as stress hormone? What are the different roles of this hormone in plants?
- 12. What is ethephon? What is its importance in agriculture?
- 13. Plants like *Sorghum* are photosynthetically more efficient than plants like Rice. Give reasons.

3 MARKS QUESTIONS

- 14. Write the differences between cyclic and non-cyclic photophosphorylation.
- 15. Schematically represent the 'Z' scheme of ETS in light reaction.
- 16. Schematically represent the Calvin cycle.
- 17. Where does cyclic photophosphorylation occur? Describe the process. Why is the process referred to as cyclic?
- 18. Write a brief note on photorespiration.
- 19. Give the differences between C₃ and C₄ plants.
- 20. Give a detailed description of the functions of the following growth regulators:
 - (i) Auxin
- (ii) Cytokinin
- (iii) Gibberellins

5 MARKS QUESTIONS

- 21. Describe C₄ pathway and represent it schematically.
- 22. Write notes on
- a) Kranz anatomy
- b) Reaction center
- c) Photolysis
- d) Law of limiting factors
- e) Absorption spectrum
- 23. With the help of a neat labeled diagram explain the chemi-osmotic hypothesis in photosynthesis.

HINTS/SOLUTION

	MULTIPLE CHOICE QUESTIONS		
1	(b)	1	
2	(c)	1	
3	(c)	1	
4	(c)	1	
5	(a)	1	
3	2 MARKS QUESTIONS	1	
6	C3 – 5carbon compound, RuBP	2	
	C4 – 3 carbon compound, PEP		
7	Light Harvesting Complex - importance	2	
8	Produces assimilatory power – ATP and NADPH		
9	Necessary for C4 pathway and thus avoids photorespiration		
10	Light, CO2, temperature, water	2	
11	ABA, withstand stress, promotes dormancy	2	
12	Ethylene, promotes fruit ripening	2	
13	Sorghum is C4 plant and Rice is C3 plant. The first one is more efficient due to the	2	
	absence of photorespiration		
	3 MARKS QUESTIONS		
14	Cyclic- electron travels in a cyclic way, only PS I, ATP synthesis, stroma lamellae,	3	
	not common		
	Non – cyclic- Z scheme, both PS I and PS II, ATP and NADPH, grana thylakoid,		
	common (any three)		
15	Schematic representation	3	
16	Schematic representation		
17	Stroma lamellae, explanation and representation	3	
18	Photorespiration – due to oxygenase activity of Rubisco, synthesis of PGA and	3	
	phosphoglycolate, wasteful process, release of CO2		
19	C3 plants and C4 plants – differences in primary carbon dioxide acceptor, kranz	3	
	anatomy, temperature tolerance, photorespiration etc.		
20	Functions of PGRs	3	
	5 MARKS QUESTIONS		
21	Schematic representation and explanation	5	
22	(a) Special leaf anatomy in C4 plants, around vascular bundles	5	
	(b) Single Chl a molecule that forms the centre of pigment system		
	(c) Splitting of water associated with 'Z' scheme		
	(d) Law of limiting factors		
22	(e) Graphical representation of absorption of light by pigments	-	
23	Diagram and explanation of chemi osmotic hypothesis	5	

Prepared by:	Checked by:
Ms. Rejitha S	HOD - SCIENCE